Investigation of Short Channel Effect on Vertical Structures in Nanoscale Mosfet

نویسندگان

  • Munawar A. Riyadi
  • Ismail Saad
  • Razali Ismail
چکیده

The recent development of MOSFET demands innovative approach to maintain the scaling into nanoscale dimension. This paper focuses on the physical nature of vertical MOSFET in nanoscale regime. Vertical structure is one of the promising devices in further scaling, with relaxed-lithography feature in the manufacture. The comparison of vertical and lateral MOSFET performance for nanoscale channel length (Lch) is demonstrated with the help of numerical tools. The evaluation of short channel effect (SCE) parameters, i.e. threshold voltage roll-off, subthreshold swing (SS), drain induced barrier lowering (DIBL) and leakage current shows the considerable advantages as well as its thread-off in implementing the structure, in particular for nanoscale regime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...

متن کامل

Device Design of Nanoscale MOSFETs Considering the Suppression of Short Channel Effects and Characteristics Variations

The device design of future nanoscale MOSFETs is reviewed. Major challenges in the design of the nanometer MOSFETs and the possible solutions are discussed. In this paper, special emphasis is placed on the combination of new transistor structures that suppress the short channel effect and on back-gate voltage control that suppresses the characteristics variations. Two new device architectures, ...

متن کامل

Investigation of Multiple Material Gate Impact on Short Channel Effects and Reliability of Nanoscale SOI MOSFETs

In this paper the features of multiple material gate silicon-on-insulator MOSFETs are presented and compared with single material gate silicon-on-insulator MOSFET structures. The results indicate that the multiple material gate structures reduce short channel effects such as drain induce barrier lowering, hot electron effect and better current characteristics in comparison with single material ...

متن کامل

Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering

In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce th...

متن کامل

Self-aligned vertical double-gate MOSFET (VDGM) with the oblique rotating ion implantation (ORI) method

A process of making a symmetrical self-aligned n-type vertical double-gate MOSFET (nVDGM) over a silicon pillar is revealed. This process utilizes the technique of oblique rotating ion implantation (ORI). The self-aligned region forms a sharp vertical channel profile and decreases the channel length Lg. A tremendous improvement in the drive-on current is noted. The electron concentration profil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014